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Summary: This article provides a brief review of recent developments in
Markov chain Monte Carlo methodology. The methods discussed include the
standard Metropolis-Hastings algorithm, the Gibbs sampler, and various spe-
cial cases of interest to practitioners. It also devotes a section on strategies for
improving mixing rate of MCMC samplers, e.g., simulated tempering, paral-
lel tempering, parameter expansion, dynamic weighting, and multigrid Monte
Carlo with its generalizations. Other related topics are the simulated annealing,
the reversible jump method, and the multiple-try Metropolis rule. Theoretical
issues such as bounding the mixing rate, diagnosing convergence, and conduct-

ing perfect simulations are only briefly mentioned.



1 Introduction

Computer simulation techniques are indispensable tools for solving difficult computational problems
in many scientific disciplines. Their wide applications range from biology (Leach 1996; Karplus
and Petsko 1990; Lawrence et al. 1993), chemistry (Alder and Wainwright1959), computer science
(Kirkpatrick et al. 1983; Ullman 1984), economics and finance, engineering (Geman and Geman
1984), material science (Frenkel and Smit 1996), physics (Metropolis et al. 1953; Goodman and
Sokal 1989), to statistics. Among all simulation methods, Monte Carlo methodology, especially
Markov chain Monte Carlo (MCMC), provides an enormous scope for realistic statistical modeling
and has attracted much attention from statisticians.

A fundamental step in all Monte Carlo methods is to generate pseudo-random samples that
follow a target probability distribution function 7(z). The variable of interest = usually takes value
in R* but occasionally can take values in a topological group (Diaconis 1988; Liu and Wu 1999).
In most applications, directly generating independent samples from the distribution of interest
7 is infeasible. It is often the case that either the generated samples have to be dependent, or
the distribution used to generate the samples is different from =7, or both. Rejection sampling
(von Neumann 1951), importance sampling (Marshall 1956) and sampling-importance-resampling
(Rubin 1987b) are schemes that make use of dependent or independent samples generated from a
trial distribution p(x), which differs from, but should be similar to, the target distribution 7. The
Metropolis-Hastings algorithm (Metropolis et al. 1953; Hastings 1970), the basic building block of
MCMUC, is the one that generates dependent samples from a Markov chain with 7 as its equilibrium
distribution. In this view, MCMC is essentially a Monte Carlo integration procedure in which the
random samples are produced by evolving a Markov chain. Because of the increasing complexities
of statistical models encountered in practice, MCMC provides a much needed unifying framework
within which many complex problems can be analyzed.

Both Bayesians and frequentists need to integrate over possibly high-dimensional probability
distributions, such as missing data and nuisance parameters, to make inference for the parameter of
interest or to make predictions. This basic need underlies the potential role of MCMC methodology
in statistical modeling and inference. The past few years have witnessed an explosive growth of
interest in MCMC methodology from researchers in almost all areas of statistics. Gilks, Richardson,
and Spiegelhalter (1995) provided a good recent survey on how MCMC has been used. Steve Brooks
administered a useful website http://www.stats.bris.ac.uk/MCMC/ for entertaining new research
papers in MCMC.



2 Prelude: Random Variable Generation

In order to generate random variables that follow a general pdf 7, we need to first generate uniformly
distributed random variables in [0,1]. However, this “simple-looking” task is not achievable on
a computer. What we can do is to generate pseudo-random numbers. More formally, we can
define a uniform pseudo-random number generator as an algorithm which, starting from an initial
value ug (i.e., the seed), produces a sequence (u;) = (D%(ug)) of values in [0,1]. For all n, the
values (u1,...,uy) should reproduce the behavior of an #id sample (V1,...,V,,) of uniform random
variables. There are a few very good pseudo-random number generators available. We refer the
reader to Marsaglia and Zaman (1993) and Knuth (1981) for further reference. From now on, we
assume that uniform random variables can be satisfactorily produced on computer. Then we have

the following simple result, whose proof is left as an exercise for the reader.

Lemma 2.1 Suppose U ~ Unif [0,1] and F is a 1-dimensional cumulative distribution function
(cdf). Then X = F~Y(U) has the distribution F. Here we define F~'(u) = inf{z; F(z) > u}.

This lemma provides us an explicit way of generating a one-dimensional random variable when
its cdf is available. Since many distributions (e.g., Gaussian distribution) do not have a closed-form
cdf, it is often difficult to directly apply the above inversion method. To overcome this limitation,
von Neumann (1951) proposed the popular rejection method, which can also be applied to draw

from multi-dimensional distributions.

Lemma 2.2 (van Neumann 1951). Suppose 7(z) and g(z) are two pdfs defined on the same sample
space and that there exists M so that w(x) < Mg(z), Vx. Then the output X from the following

algorithm follows distribution :
1. Generate Y ~ g, and U ~ Unif [0,1];

2. Accept X =Y if U < n(Y)/Mg(Y); otherwise go back to step 1.

For a given target distribution 7, we can implement this rejection method by first employing
a distribution ¢ that is easy to generate sample from and then finding the “envelop constant” M.
Clearly, the efficiency of the method depends on how large M is. Some comparisons of this method

with other approaches (such as importance sampling) can be found in Liu (1996a).

3 Metropolis-Hastings Algorithms

Let m(z) = cexp{—h(z)} be the target probability distribution function under investigation (pre-
sumably all pdfs can be written in this form). Metropolis et al. (1953) introduced the fundamental



idea of evolving a Markov process to achieve the sampling of =. Hastings (1970) later provided a

more general form of this type of algorithms.
3.1 The Metropolis algorithm

Starting with any configuration (%), the Metropolis algorithm iterates the following two steps.

Step 1: Propose a random “perturbation” of the current state, i.e., z(!)/ — ', where z' can be seen
as generated from a symmetric probability transition function T'(z®,z') (i.e., T(z,z') =
T (', z)); calculate the change Ah = h(z') — h(z®).

Step 2: Generate a random number u ~ uniform(0,1). Let z(*t1) = z' if u < exp(—Ah), and let

2D = z(®) otherwise.

The Metropolis scheme has been extensively used in statistical physics over the past 40 years
and is the cornerstone of all Markov chain Monte Carlo (MCMC) techniques recently adopted and

further developed in the statistics community.

Figure 1: Simulation of balls’ movements in a closed box by the Metropolis algorithm. Left: after

1000 iterations; right: after 2000 iterations.

As an example, we consider simulating uniformly distributed positions of K hard-shell balls in
the box [0, A] x [0, B]. These balls are assumed to have equal diameter d. Let (X,Y) = {(z;,v:), i =
1,...,K} denote the positions of these balls. The target distribution of interest 7(X,Y") is equal
to a positive constant when the balls are all in the box and have no overlaps, and is equal to zero
otherwise. The Metropolis algorithm can be implemented as follows: (a) pick a ball at random,

say, its position is (z;,v;); (b) move it to a tentative position (z},y.) = (z; + 61,v; + d2), where
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8 ~ N(0,08); and (c) accept the proposal (z},y!) if it does not violate the constraints (i.e., within
the box and has no overlap with others). Otherwise stay put. With K =6, d = 0.8, A = B = 3.5,
and starting positions of the balls at regular grids, we adjusted o2 to 0.5 which gave us an acceptance
rate of about 30%. Figure 1 shows two snap-shots of this simulation: the first one was taken after

1000 iterations, and the second one taken after 2000 iterations.

3.2 Hastings’ generalization and mathematical formulation

For any given w(x), the Metropolis-Hastings algorithm prescribes a transition rule for a Markov
chain so that the equilibrium distribution of the chain is 7(z). To start the algorithm, one first
gives an arbitrary, but easy to sample from, transition function T'(z,y) (often called a proposal

distribution). With the proposal distribution, one can implement the following iteration:

Metropolis-Hastings Algorithm: Given current state z(*),

e Draw y from the proposal distribution T(a:(t),y).
e Draw U ~ Uniform[0,1] and update

L) =) Y if U < p(z®),y)
z®)  Otherwise

where Metropolis et al. (1953) and Hastings (1970) suggested to use

m(y)T(y, z) } _

pla,y) =min {1, v

Baker (1965) suggested another acceptance/rejection function:
m(y)T (y, )
()T (y,z) + 7(x)T (z,y)
A more general formula for p(x,y) is given by Charles Stein (personal communication):
i(z,y)
()T (z,y)’

where 6(z,y) is any symmetric function in x and y that makes p(z,y) < 1 for all z,y. Note

p(z,y) =

(2)

p(z,y) =

that in all of the foregoing formulas, T'(z,y) cancels with T'(z,y) if it is a symmetric proposal, as
originally required by Metropolis et al. (1953). The intuition behind the ratio T'(y,z)/T(z,y) is to
compensate the “flow-bias” of the proposal chain.

If a rejection function of form (2) is used, then for any y # z the actual transition probability
from z to y implied by the Metropolis-Hastings’s rule is

Az,y) =T(z,y)p(x,y) = T(w,y)ﬂ d(z,y)

— 7 — () Lo (z, y).
@Iy " @)



Because d(z,y) = d(y, z), we have that m(z)A(z,y) = n(y)A(y, z) for all z # y. This implies that
the Markov chain induced by the Metropolis-Hastings rule is reversible and has 7 as its invariant
distribution. However, convergence rate of this chain is highly dependent of both T'(z,y) and the
target distribution 7. See Roberts and Tweedie (1996).

For discrete state spaces, Peskun (1973) showed that the optimal choice of p(z,y) in terms
of statistical efficiency is that of Metropolis et al. (1953)’s. But the issue is less clear in terms of

convergence rate of the induced Markov chain (Frigessi et al. 1993; Liu 1996b).

4 Gibbs Sampling and Data Augmentation in Statistics

The Gibbs sampler (Geman and Geman 1984) is a special MCMC scheme. Its most prominent
feature is that the underlying Markov chain is constructed by using a sequence of conditional
distributions which are so chosen that 7 is invariant with respect to each of these “conditional”
moves. Thus, the Gibbs sampler effectively reduces a high-dimensional simulation problem to a

series of lower dimensional ones.

4.1 The Gibbs sampler

Suppose z = (z1,...,24). In the Gibbs sampler, one randomly or systematically choose a coor-
dinate, say z1, and then update it with a new sample | drawn from the conditional distribution
(- | T[_q)), where z[_ 4 refers to {z;, j € A°} for any subset A of the coordinates. Algorithmically,

we can describe the Gibbs sampler as follows:

Random Scan Gibbs sampler. Suppose currently z(t) = (xgt), . x(dt)). Then

e Randomly select i from {1,...,d} according to a given probability vector (a1, ..., aq)-

Z(H'l) from the conditional distribution 7(- | .Q:Et) ), and let 2D = xft)

—1] d —i]’

e Draw zx

Systematic Scan Gibbs sampler. Currently () = (:vgt), . ..wl(it)).

e Fori=1,...,d, we draw iL‘Z(t—H) from the conditional distribution
t+1 t+1) (¢t t
7r(:1:z|:1:§ ),...,:Bgfl),xgﬁl,...,:vfi)).

It is easy to check that ewvery individual conditional update leaves 7w invariant. Suppose currently

(t)

z®) ~ 7. Then T follows its marginal distribution under 7. Thus,

(t+1

m(z;

M a%) x w(alVy) = (@Y, ),



which means that after one conditional update, the joint distribution of (xft_)i], zgtﬂ)) is still 7.

Under regularity conditions, one can show that the Gibbs sampler chain converges geometri-
cally and its convergence rate is related to how the variables correlate with each other (Schervish
and Carlin 1993; Liu 1994; Tierney 1994). It was argued that grouping highly correlated vari-
ables together in the Gibbs update can greatly speed up the sampler (Liu et al. 1994; Liu 1994).
Some researchers have also shown that random scan can outperform systematic scan in terms of
convergence speed (Roberts and Sahu 1997).

A simple restatement of the conditional updates in the Gibbs sampler can be potentially useful:

they can be seen as a way to move the point z along a direction:
x; — :L‘; =z; +c,

where ¢ is drawn from an appropriate distribution. It is not difficult to show that if ¢ is drawn
from p(c) o< 7(z; + ¢, [—;), then the move leaves m invariant. This view is critical in generalizing
the Gibbs sampler under a transformation group setting (Liu and Wu 1999), which is useful for
designing more efficient MCMC samplers. See Section 7 for more discussions.

The Gibbs sampler’s popularity in statistics community stems from its extensive use of con-
ditional distributions in each iteration. Tanner and Wong (1987)’s data augmentation (see the
Chapter for EM algorithm) first linked the Gibbs sampling structure with missing data problems
and the EM-type algorithms (see the Chapter for EM algorithm). Gelfand and Smith (1990) fur-
ther pointed out that the conditionals needed in Gibbs iterations are commonly available in many

Bayesian and likelihood computations.

4.2 Data augmentation: a two component Gibbs sampler

Suppose random variable z can be partitioned into two parts, z = (z1,z2), and the current state

) .0

is (z7’,z5”). Then a two-component Gibbs sampler updates as follows:

e Draw x&tﬂ) from the conditional distribution 7y 5(- | xg));

e Draw :EgH) from the conditional distribution 7y (- | :cgtﬂ)).

This sampler is especially interesting for the following two reasons. Firstly, it corresponds to the
data augmentation algorithm (Tanner and Wong 1987), which was designed for handling Bayesian
missing data problems. In such problems, one of the components, say x1, often corresponds to the
parameter of interest, and the other one, zo corresponds to missing data. The Gibbs iterations
are then the ones between drawing the parameter value conditional on currently imputed missing

data and then imputing the missing data conditional on the current parameter value. This idea is



closely related to the EM algorithm (Dempster, Laird and Rubin 1977) and multiple imputation
(Rubin 1987), and has long been appealing to applied statisticians.

Secondly, the two-component Gibbs sampler has some nice theoretical properties. Under weak
regularity conditions, Liu et al. (1994, 1995) showed that the sampler converges geometrically and
monotonically. The convergence rate of the sampler is equal to the mazimal correlation between the
two components, which is closely related to a statistical concept, the faction of missing information

(Rubin 1987; Liu 1994) in Bayesian missing data problems. It was found that under stationarity
coolh(2”), h(w{")] = vars[E{h(a1) | w2}],

holds for any function h, which can be used to derive an expression for lag-n auto-covariances:

covt(@ ), t(a{™)] = vare[Ba[-- Bx[Ex{t(z1) | @2} | 1] | -], (3)
covls(ay?),s(@y")] = varg[Bal--- Bx[Bxf{s(z2) | @1} | 2] | -], (4)

where the right hand sides of both (3) and (4) have n expectation signs conditioned alternately on
1 and zy. These formulas were then used to compare different imputation schemes and to show

that Rao-Blackwellization always increases efficiency of Monte Carlo estimates.

4.3 An example

Efron and Morris (1975) used empirical Bayes method to analyze data of the first 45 at-bats in the
middle of a season for n = 18 major league players (shown in column 2 of Tablel). They estimated
the 18 “true” betting probabilities based on this data set, and then used them as predictions of each
person’s betting average for the remainder of the season. Here we apply a hierarchical Bayes model
and data augmentation for the same task. Let Y; denote the observed betting average (column two
in the table) in the first 45 at bats of the ith person, and let p; denote his true betting percentage.

A variance-stabilizing transformation of Y; was first performed in Efron and Morris (1975):
X; = V45 arcsin(2Y; — 1), and let 6; = V45 arcsin(2p; — 1).

Then approximately X; can be regarded as a N(6;,1) random variable. To build a hierarchical
model, we assume that the 6; are iid from N(u,0?). Furthermore, we assume that the prior
distribution for g and o is uniform on (—o0, 00) X (0, 00), thus improper. As an exercise, the reader
may try out with other priors, but note that the prior for ¢ can not be singular at 0.

We implemented a Gibbs sampler for the problem which iterates the following 2 steps:
— Draw 6;, i = 1,...,18, conditional on x and o?.
— Draw p and o2 conditional on all the values of 6;.

Figure 2 shows the posterior density of 4 via Gibbs sampling approximation as well as the shrinkage



Table 1: Batting Averages and Their Estimates

Batting average | Batting average | Stein’s |Efron-Morris’s
Player | for first 45 at-bats | for remainder |estimator estimator
1 .400 .346 .290 .334
2 378 .298 .286 313
3 .356 .276 281 .292
4 333 222 277 277
5 311 273 273 273
6 311 .270 273 273
7 .289 .263 .268 .268
8 .267 210 .264 .264
9 244 .269 .259 .259
10 244 .230 259 .259
11 222 .264 .254 .254
12 222 .256 254 .254
13 222 .303 .254 .254
14 222 .264 254 .254
15 222 .226 .254 .254
16 .200 .285 .249 .249
17 178 .316 244 233
18 .156 .200 239 .208

estimates of p;. In fact this Gibbs procedure can be further modified to improve efficiency. See Liu
(1994), Gelfand et al. (1995), and Liu and Sabatti (1998b) for more discussions.

5 Special Markov Chain Monte Carlo Algorithms

To illustrate how the Metropolis-Hastings rule and the Gibbs sampler are adopted in practice, we

now describe a few such algorithms that have appeared frequently in the literature.

5.1 The independence chain

A special choice of the proposal transition 7'(z,y) in the Metropolis-Hastings algorithm is an
independent trial density p(y). That is, the proposed move y is generated from p(-) independent
of the previous state z(!). This method, as first proposed by Hastings (1970), appears to be an
alternative to the rejection sampling and importance sampling. Its convergence properties was
studied in Liu (1996a).

Metropolized Independence Sampler (MIS): given current state z®)
e Draw y ~ p(y)
e Simulate u ~ Uniform|0,1] and let

y, if u<min{1, 20}

LD (=)

z®,  Otherwise.
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Figure 2: Left: Posterior density of 4 — Gibbs sampling (solid) versus normal (dotted) approxima-
tion. The solid curve is almost indistinguishable from the true posterior of . Right: a graphical

view of how shrinkage estimates are related to their respective MLE’s.

where w(z) = w(z)/p(z) is the usual importance sampling weight.

As with the rejection method, the efficiency of MIS depends on how close the trial density p(y)
is to the target m. To ensure robust performance, it is advisable to let p(-) be a relatively long-
tailed distribution. Tierney (1994) and Gelman and Rubin (1992) suggested that one can insert a
couple of MIS steps into Gibbs iteration when correctly sampling from a conditional distribution
is difficult. The idea is useful in many Bayesian computations in which each conditional density
can be approximated reasonably well by a Gaussian distribution. To accommodate irregular tail

behaviors, it is essential to use a long-tailed ¢-distribution as p(x).

5.2 Random-walk Metropolis

This is exactly the algorithm we have used for simulating position distribution of the six balls in
a box. Suppose 7(z) is defined on R? and is of interest. Given current state z(*), the algorithm

iterates as follows:

e Draw € ~ g, and set y = z(*) + €. where g, is a spherically symmetric distribution and o can

be controlled by the user. An often used distribution is N(0,02I).

e Simulate u ~ Uniform|0,1] and update

LD )Y if u<n(y)/m(z®),
#®,  Otherwise.
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Gelman, Roberts, and Gilks (1995) gave some interesting results and heuristic guidance on

how to choose ¢ so as to achieve fast convergence.

5.3 Hit-and-run algorithm

For a given current sample z(*) one does the following: (a) uniformly select a random direction e®;
(b) sample a scalar r{®) from density f(r) < 7(z® + re®); and (c) update (1) = z(®) 4 M e®),
This algorithm behaves like a random-direction Gibbs sampler and allows for a complete exploration
of a randomly chosen direction. It tends to be especially helpful when there are severl modes (with
comparable sizes) in the target distribution.

A main difficulty in implementing the algorithm, however, is that one is rarely able to draw
from f(r) in practice. Then s/he may end up only using a single step of Metropolis update (Chen

and Schmeiser 1993) — which renders the algorithm equivalent to the random-walk Metropolis.

5.4 Adaptive directional sampling

Gilks, Roberts and George (1994) proposed a multiple-chain MCMC method, adaptive directional
sampling (ADS), which allows for the exchange of information across different chains. At each itera-
tion of the ADS (or snooker algorithm), one has a population of samples, say S® = {X 50, een, 7(,2) 1
of size m. Then the next generation S**1) is produced as follows: (a) a member Xét) from S® is
selected at random; (b) a random direction e(®) is generated as e(t) = (Xc(t) — X((lt))/ ||X§t) —x{P Il,
where the anchor point X4 is chosen at random from S® \{Xc(t) }; (c) a scalar r® is generated from
an appropriate distribution f(7); and, finally, (d) update Xc(tH) = Xc(Lt) +rMe® and X ](-Hl) =X ](-t)

for j # c. Gilks et al. (1994) and Roberts and Gilks (1994) show that f(r) should be of the form
F(r) o [rffle(x O 4 re®).

They also gave a more general form of this algorithm and provided cautionary advice on its use.
Again, a main difficulty for using the ADS in practice is that sampling from f(r) is often infeasible.

Liu, Liang and Wong (1998) proposed a way to overcome it.

5.5 Slice sampler

Suppose 7(x) is a density function of interest and # € R%. Then drawing z ~ 7(z) is equivalent to
generating z = (21,...,24+1) so that it is uniformly distributed in the region S under the surface of
7, i.e, S={2€ R™*': 241 <7(z,...,24)}. However, generating uniformly distributed random
variables in an arbitrary region is equally difficult as any other simulation problem. One can apply

the following Gibbs iteration to achieve the sampling:
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e draw y(+D) ~ Unif [O,W(x(t))] )

t+1)

o draw uniformly from region St = {z : n(x) > y*t11.

However, region S+ in the iteration is still difficult to deal with. When 7 can be written as
the product of k functions, i.e., 7(z) = fi(z) X --- X fx(z), Edwards and Sokal (1988) introduced &
auxiliary variables y1, ...,y and described a Gibbs sampler for sampling (z,y1,- .., yx) uniformly

over the region 0 < y; < fi(z), i=1,...,k:
e Draw "tV ~ Unif[0, f;(z®)], i = 1,..., k.

3
e Draw z(**') uniformly from region St =Nk_ {z: f;(z) > yZ(H—l)}.

Damien, Wakefield and Walker (1997) showed that in many cases one can find a decomposition
of 7 so that the intersection set S®**1) is easy to compute, which leads to an easily implemented
sampler. But others noticed that its convergence may be slowed by the presence of many auxiliary
variables. Applications of this approach to image analysis have been discussed by Besag and Green
(1993) and Higdon (1996).

5.6 Metropolized Gibbs sampler

When the state space of interest is discrete, Liu (1996b) suggested a way to improve the ordinary
Gibbs sampler by using an “over-relaxation” and proved its superiority.

Suppose that X = (Xi,...,Xy4), where X; takes m; possible values, and that m(z) is the
distribution of interest. In the random scan Gibbs sampler described in Section 4.1, a coordinate
1 is first randomly chosen and the current value z; is replaced by a value y; drawn from the
corresponding full conditional distribution. Here we consider a modification of the above procedure
in which a value y;, different from z;, is drawn with probability

m(yi | 1_q)
1 —7(x; | 71_y)

bl

then y; replaces z; with the Hastings (1970) acceptance probability,

min{l 1—m(z; | x[—i])}’

"1 =7y | m—)
else z; is retained. Liu (1996b) proves that the modified Gibbs sampler for discrete random variables
as defined above is statistically more efficient than the random scan Gibbs sampler.

When m; = 2, the Gibbs sampler is essentially Barker’s (1965) method, whereas the modified
procedure becomes a Metropolis et al. (1953) algorithm. Peskun (1973) makes some general
comparisons between these two samplers. Besag et al. (1995) note that the superiority of Metropolis
for binary systems results from its increased mobility around the state space. This rationale applies

more generally to the modified Gibbs sampler.
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6 Convergence Diagnosis

Our view on this issue concurs with that of Cowles and Carlin (1995): a combination of Gelman and
Rubin (1992) and Geyer (1992) can usually provide an effective, yet simple, method for monitoring
convergence in MCMC sampling. Many other approaches, which typically consume a few times
more computing time, can only provide marginal improvements. The perfect simulation method
recently proposed by Propp and Wilson (1996) is an exciting theoretical breakthrough and its
value in assessing convergence of MCMC schemes has been noticed (Robert 1998). But the method
is still not ready (i.e., general and practical enough) for a routine use for MCMC computation.
Interested reader may find Robert (1998) an inspiring reference, which provided an extensive study
on convergence diagnostics.

Based on normal theory approximations to the target distribution m(z), Gelman and Rubin

(1992) proposed a method that involves the following steps:

1. Before sampling begins, obtain a simple “trial” distribution f(z) which is over-dispersed

relatively to the target distribution 7. Generate m (say, 10) iid samples from f(z).

2. Start m independent samplers with starting values obtained in Step 1. Run each chain for

2n iterations.

3. For a scalar quantity of interest (after appropriate transformation to approximate normality),
say 0, we use the sample from the last n iterations to compute W, the average of m within-

chain variances, and B, the variance between the means 6 from the m parallel chains.
4. Compute the “shrink factor”
N -1 1B d
\/} _ (n L™ + _> Iif
n mn W) df —2

Here df refers to the degree of freedom in a t-distribution approximation to the empirical

distribution of 6.

Gelman and Rubin (1992) suggested to use # = log 7(z) as a general diagnosis benchmark. Other
choices of § have been reviewed in Cowles and Carlin (1995).

Geyer’s (1992) main criticism to Gelman and Rubin’s approach is that for difficult MCMC
computation, one should concentrate all the resources to a single chain iteration: the latter 9000
samples from a single run of 10,000 iterations is much more likely to come from the target distribu-
tion 7 than those samples from 10 parallel runs of 1,000 iterations. In addition, good convergence
criterion such as autocorrelation time used by physics can be produced with a single chain.

Concerning generic use of MCMC methods, we advocate a variety of diagnostic tools rather

than any single plot or statistic. In our own work, we often run a few (3 to 5) parallel chains
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with relatively scattered starting points. Then we inspect these chains by comparing many of their

aspects, such as the histogram of some parameters, autocorrelation plots, and Gelman-Rubin’s R.

7 Towards More Efficient MCMC Sampler and Optimizer

In this section, we describe a few innovative ideas built upon the fundamental MCMC framework
for global optimization and for more efficient Monte Carlo simulations. Some of these ideas have

made tremendous impact in many scientific research areas and computer industry.

7.1 Simulated annealing

In condensed matter physics, annealing is known as a thermal process for obtaining low energy

states of a solid in a heat bath. The process has two steps:
¢ Raise the temperature of the heat bath high enough for the solid (metal) to melt.

e Decrease carefully the temperature of the heat bath until the particles arrange themselves in

the ground state of the solid (i.e., crystallize) .

At high temperature phase, the solid metal becomes a liquid and all its particles can “flow” around
to rearrange themselves freely; whereas at low temperature the particles are gradually forced to
“line-up” so as to attain the lowest-energy state. Realizing that the Metropolis algorithm can be
used to simulate particle movements at various temperature to reach thermal equilibrium, Kirk-
patrick, Gelatt and Vecchi (1983) proposed a computer imitation of the annealing process, called
the simulated annealing (SI), and applied it to solve combinatorial optimization problems.

The Algorithm. Suppose our task is to find the minimum of a target function h(z). This is
equivalent to finding the maximum of exp{—h(z)/T} at any given “temperature” T. Let T1 >
Ty > -+ > T} > --- be a sequence of monotone decreasing temperatures in which T3 is reasonably
large and limg_,oo T = 0. At each temperature T, we run Ny iterations of a Metropolis-Hastings
or the Gibbs sampler, with 7 (z) o exp{—h(z)/T}} as its equilibrium distribution. Because as k
increases 7 puts more and more of its probability mass (converging to 1) into a vicinity of the
global maximum of h, we will almost surely be in a vicinity of the global optimum if the number

of M-H iterations Ny is sufficiently large. Algorithmically, we do the following;:

e Initialize at an arbitrary configuration zy and temperature level T;.

e For each k, we run Ny steps of MCMC iterations with 7;(x) as its target distribution. Pass

the final configuration of x to the next iteration.

e Increase k to k + 1.

14



It can be shown that the global maximum can be reached by SA with probability 1 if tem-
perature T}, decreases sufficiently slowly, i.e., at the speed of order O(log(L;)™!), where Ly =
Nj + -+ + Ni (Geman and Geman 1984). In practice, no one can afford to have such a slow an-
nealing schedule. Most frequently people use a linear or even exponential temperature decreasing
schedule, which can no longer guarantee that the global optimum will be reached. However, many
researchers’ experiences during the past fifteen years have testified that the SA is a very attractive

general-purpose optimization tool. See Aarts and Korst (1989) for further analysis.

7.2 Simulated tempering and parallel tempering

To increase mixing rate of a MCMC scheme, Marinari and Parisi (1992) and Geyer and Thompson
(1995) proposed a technique, simulated tempering (ST), in the same spirit as simulated annealing.
To implement ST, one first constructs a family of distributions I = {m;(z) ¢ € I} by varying a single
parameter, the temperature, in the target distribution 7. Distribution 7 corresponds to the member
of this family with the highest temperature. Then a new target distribution, mg(z,7) o< ¢;m;(z), is
defined on the augmented space (z,7) € X x I. Here ¢; is a controllable constant, whose role is to
allow each temperature level to have reasonable chance of being visited. Finally, a MCMC sampler
is used to draw samples from 7. The intuition behind ST is that by heating up the distribution
repeatedly, the new sampler can escape from a local mode and increase its mixing rate. Initiated
with 4(®) = 0 and any z(%) in the space of interest, the ST algorithm consists of the following steps:
ST Algorithm. With the current state (z®,i®) = (z,4), we draw u ~ Unif [0,1].

o If u < ag, we let i) =4 and let 2(*+D be drawn from a MCMC transition T;(z, z(*1)

that leaves 7; invariant.

o If u > g, we let 1) =z and propose a temperature transition i — 4’ (usually a simple
nearest-neighbor random walk with reflecting boundary), and let i) = ¢ with probability

min {1’ Céi::'(g)} . otherwise let (1) = 4.

In order for ST to work well, the two adjacent distributions m; and m;1; need to have sufficient
overlap and the a; need to be tuned carefully. This requirement sometimes demands one to prescribe
many temperature levels which adversely affect the efficiency of the algorithm. For optimization
purpose, we have applied a relazed version of the ST in a VLSI design problem and obtained good
results (Cong et al. 1999). Dynamic weighting method described in the next section can also be
used to overcome steep energy barriers encountered in temperature transitions.

Parallel tempering (Geyer 1991) is an interesting and powerful twist of the ST. Instead of
augmenting X to X x I, Geyer suggested augmenting X to a product space X; X --- X X7, where

the X; are identical copies of X. Suppose (z1,...,27) € X1 X---x X1. For the family of distributions
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IT ={m,i=1,...I}, we define a joint probability distribution on the product space as

Tpt(T1,-..,21) = H mi(z),
i€l
and run parallel MCMC schemes on each space X;. An “index swapping” operation is conducted

in the place of temperature transition in ST. The PT algorithm can be more rigorously defined as

follows: suppose the current state is (xgt), e :1:?)) € X;erX. Draw u ~ Unif [0,1].

(®)

i

(t+1)

to x; via their

o If u < ap, we conduct the parallel step. That is, we update every x

respective MCMC scheme.

o If u > ag, we conduct the swapping step. That is, we randomly choose a neighboring pair,

() ()
A 41

| @) mn e
) (t)) '

7TZ($i )7ri+1(5"'z'+1

say ¢ and ¢ 4+ 1, and propose to “swap” z;’ and z Accept the swap with probability

This scheme is very powerful in simulating complicated systems such as bead polymers and other
molecular structures. It has also been very popular in dealing with statistical physics models
(Hukushima and Nemoto 1996). Compared with the ST, PT does not need fine tuning (to adjust

normalizing constants «;) and can utilize information in multiple MCMC chains.

7.3 Dynamic weighting in MCMC

Wong and Liang (1997) introduced the use of a dynamic weighting variable for controlling Markov
chain simulation. By using this scheme, they were able to obtain better results for many op-
timization problems such as the traveling salesman problem and neural network training; and
high-dimensional integration problems such as the Ising model simulation.

To start a dynamic weighting scheme, we first augment the sample space X to X x RT so as
to include a weight variable. Similar to the Metropolis algorithm, we also need a proposal function
T(x,y) on the space X. Suppose at iteration ¢ we have (z® w®) = (z,w). Then an R-type Move

is defined as

7r(y)T(y,sv%

e Draw Y =y from T'(z,y) and compute the Metropolis ratio r(z,y) = OIETR

e Choose 0 = (w,z) > 0, and draw U from uniform(0,1). Then let

(2D (D)) = (v, wr(z,y) +6),  HU< %; (5)
(z®), W), Otherwise.
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It is easy to check the R-type move does not have 7 as its equilibrium distribution. Wong and
Liang (1997) propose to use invariance with respect to importance-weighting (IWIW) for justifying
the above scheme. That is, if the joint distribution of (z,w) is f(z,w) and z is said correctly
weighted by w with respect to 7 if - wf(z,w) o w(z). A transition rule is said to satisfy IWIW
if it maintains the correctly—weighteﬁness for the joint distribution of (z,w). Clearly, the R-type
move satisfies IWIW.

The purpose of introducing importance weights into dynamic Monte Carlo process is to provide
a means for the system to make large transitions not allowable by the standard Metropolis transition
rules. The weight variable is updated in a way that allows for an adjustment of the bias induced

by such non-Metropolis moves.

7.4 Reversible jump

In applications such as Bayesian model selections (Green 1995), one often need to have a sampler
that jumps between different dimensional spaces. In principle, one still can follow the Metropolis-
Hastings’s rule to guide for the design of such a sampler.

Suppose X corresponds to a higher dimensional space and Y to a lower one. To communicate
between the two spaces, one needs to have two “proposals,” one for Y — X and another for X — ).
Since Y is of lower dimensional, any transition from ) to X must have a degenerate density with
respect to the dominant measure of X, implying that not all the moves from X — ) can be
“reversed” by the transition from ) to X'. To overcome this difficulty, one must have a “ matching
space” Z, so that Y x Z has the same dimension as X, and a matching sampling distribution p(z | y).
With the matched space, one can come up with two nondegenerate proposals, 77 : Y x Z —» X
and T : X — Y x Z, and follows the Metropolis-Hastings’s rule to design jumps.

For example, to jump from Y to X, we first draw z € Z that follows p(z | y) and then draw z’
from Ti[(y, 2z),-]- Accept the move with probability

T[2', (y, 2)] } _

"Ti[(y, 2), 2"]g1(2 | )

Jumping from X to ) is achieved by proposing z — (v, 2') by T» and accepting it with

o, Bl (] 9)
b= {1’ Tolz, (y', 2')] }

a:min{l

Green (1995) presented a more formal treatment of this type of move and named them reversible
jumps. A method for combining the reversible jump and simulated tempering to speed up MCMC
sampling was discussed in Liu and Sabatti (1998b).
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7.5 Multigrid Monte Carlo and generalized Gibbs

The multigrid method was first developed in the field of computational mathematics for solving
partial differential equations (McCormick 1989). Its main idea is to alternately apply iterative
algorithm (such as Gauss-Seidel method) on different grid-discretizations of the space. In doing
so, the slow-varying components of the error can be damped more rapidly during “coarser-grid”
iterations, whereas the high frequency components can be removed during “finer-grid” iterations.
Goodman and Sokal (1989) applied the idea to Monte Carlo computation for statistical physics
models and named it multigrid Monte Carlo (MGMC). They translated the multigrid idea into a
way of designing progressively more global moves. Instead of updating one component a time as
in the Gibbs sampler, MGMC suggests moving several highly correlated ones simultaneously along
certain subspace. Liu and Sabatti (1998a,b) generalized this key step of MGMC for statistical
applications.

Liu and Wu (1999) discovered that MGMC is in fact a generalization of the Gibbs sampler
and each move in MGMC can be understood from a transformation group viewpoint. Let G be
a locally compact group of transformations on the space of z. Starting from an initial point (0,
a group move from £ to a new point is achieved by first drawing a ¢ € G from the conditional

distribution
p(g) o m(g(z))|J, (=) |H (dg),

where J; is the Jacobian of the transformation and H is the left Haar measure for G, and then
letting (1) = g(a:(t)). It can be shown that this move leaves 7 invariant. Gibbs sampling update

corresponds to using a translation group on one coordinate a time.

7.6 Multiple-Try Metropolis (MTM)

We end this section with an interesting generalization of the Metropolis-Hastings’s transition rule.
This new rule (Frenkel and Smit 1996; Liu et al. 1998) enables a MCMC sampler to make large
step-size jumps. It is particularly useful when one identifies certain directions of interest but has
difficulty to implement a Gibbs-sampling type move because of unfavorable conditional distribu-
tions. Therefore, the MTM can be readily combined with the hit-and-run and ADS algorithms

(Section 5). The following two versions are similar but not equivalent even when T' is symmetric.
Algorithm (I):
e Draw k trials y1,...,y, from the proposal distribution 7'(z,y). Compute
9(x,y;) = n(z)T(x,y;) (6)

and g(y;,x), for j =1,...,k.
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e Select Y = y; among the y’s with probability proportional to g(y;,z), j = 1,...,k. Then

draw z7,...,z;_; from the distribution T'(y;, z*), and let =} = z.

e Accept y; with probability

. gy, x) + -+ g(yk, v)
min ¢ 1, " "
9@, y) + -+ 9(@f, v)

and reject with the remaining probability.
Algorithm (II):
e Draw k trials y1, ...,y from a symmetric proposal distribution 7'(z,y).

e Select Y = y; among the y’s with probability proportional to 7(y;), j = 1,...,k. Then draw

zh,...,z)_, from the distribution T'(y;,z'). Denote z}, = .

e Accept y; with probability

min{l w(y1)+---+w(yk)}
") o+ ()

and reject with the remaining probability.

It can be easily shown that the two new transitions also satisfy the detailed balance condition,

thus, induce reversible Markov chains with 7(z) as its invariant distribution.

8 Final Remarks

Given the limited space, we are only able to provide a very sketchy, and perhaps very biased, review
of recent developments in Markov chain Monte Carlo methodology. There are a lot of interesting
new theoretical and methodological developments we are unable to cover. Among those Monte
Carlo methods that are left out from this article, sequential importance sampling is perhaps the
most significant recent development. Interested reader is referred to a recent article by Liu and
Chen (1998). They provided a general framework of the methodology and reviewed connections
between some related methods, namely, the bootstrap filter (Gorden et al. 1993) and sequential
imputation with rejuvenation (Kong et al. 1994; Liu and Chen 1995). Much of theoretical work
on convergence rates of MCMC algorithms and on convergence diagnostics are omitted. A lot of
useful Monte Carlo techniques developed by physicists, biochemists, and structural biologists are
not included. Connections of MCMC with neural network training and with genetic algorithms are
not commented on. Almost all applications of MCMC are left to the reader for further reading.
With all these defects, we still hope that the reader will find MCMC methodology exciting

and the methods described in this article useful. We also hope that some of the reader will join us
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in the effort to discover new and more efficient MCMC techniques and to understand theoretical

properties of them.
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